Image-based and risk-informed detection of Subsea Pipeline damage

نویسندگان

چکیده

Abstract As one of the most important assets in transportation oil and gas products, subsea pipelines are susceptible to various environmental hazards, such as mechanical damage corrosion, that can compromise their structural integrity cause catastrophic financial damage. Autonomous underwater systems (AUS) expected assist offshore operations personnel contribute pipeline inspection, maintenance, detection tasks. Despite promise increased safety, AUS technology needs mature, especially for image-based inspections with computer vision methods analyze incoming images detect potential through anomaly detection. Recent research addresses some significant challenges environments, including visibility, color, shape reconstruction. However, despite high quality images, lack training data reliable image analysis difficulty incorporating risk-based knowledge into existing approaches continue be obstacles. In this paper, we industry-provided propose a methodology address faced by popular methods. We focus on posed opportunities creating synthetic using risk insights. gather information anomalies, evaluate general approaches, generate compensate result from lacking data, evidence thereby increasing likelihood more inspection

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Subsea Free Span Pipeline Damage Detection Based on Wavelet Transform under Environmental Load

During their service life, marine pipelines continually accumulate damage as a result of the action of various environmental forces. Clearly, the development of robust techniques for early damage detection is very important to avoid the possible occurrence of a disastrous structural failure. Most of vibration-based damage detection methods require the modal properties that are obtained from mea...

متن کامل

The Combinational Use Of Knowledge-Based Methods and Morphological Image Processing in Color Image Face Detection

The human facial recognition is the base for all facial processing systems. In this work a basicmethod is presented for the reduction of detection time in fixed image with different color levels.The proposed method is the simplest approach in face spatial localization, since it doesn’trequire the dynamics of images and information of the color of skin in image background. Inaddition, to do face...

متن کامل

Improved FTA Methodology and Application to Subsea Pipeline Reliability Design

An innovative logic tree, Failure Expansion Tree (FET), is proposed in this paper, which improves on traditional Fault Tree Analysis (FTA). It describes a different thinking approach for risk factor identification and reliability risk assessment. By providing a more comprehensive and objective methodology, the rather subjective nature of FTA node discovery is significantly reduced and the resul...

متن کامل

the study of practical and theoretical foundation of credit risk and its coverage

پس از بررسی هر کدام از فاکتورهای نوع صنعت, نوع ضمانت نامه, نرخ بهره , نرخ تورم, ریسک اعتباری کشورها, کارمزد, ریکاوری, gdp, پوشش و وثیقه بر ریسک اعتباری صندوق ضمانت صادرات ایران مشخص گردید که همه فاکتورها به استثنای ریسک اعتباری کشورها و کارمزد بقیه فاکتورها رابطه معناداری با ریسک اعتباری دارند در ضمن نرخ بهره , نرخ تورم, ریکاوری, و نوع صنعت و ریسک کشورها اثر عکس روی ریسک اعتباری داردو پوشش, وثی...

15 صفحه اول

Damage Detection of Axially Loaded Beam: A Frequency-Based Method

The present study utilizes an analytical method to formulate the three lowest modal frequencies of axially-loaded notched beam through both crack location and load level in a specific format that can be used in existing frequency-based crack-identification methods. The proposed formula provides a basis to shift into two states, one with axial loading and the other without any loading whatsoever...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discover Artificial Intelligence

سال: 2023

ISSN: ['2731-0809']

DOI: https://doi.org/10.1007/s44163-023-00069-1